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The experimental work has been undertaken on the washing complex dynamics
to verify the theoretical approach from Part I. The measured time histories were
analyzed by using spectral and phase-space analyses. The correlation dimension
and the largest Lyapunov exponent were estimated on a reconstructed phase space
through an embedding procedure by using di!erent measured time histories. The
largest positive Lyapunov exponent and the non-integer value of the correlation
dimension of the attractor con"rm the chaotic nature of the washing complex
dynamics. The visualization procedure was also implemented in three-dimensional
space. Di!erences were found in the values of the correlation dimension and largest
Lyapunov exponent when estimating them from di!erent measured signals. At the
same time those estimated values show the same nature of motion. Power spectra
and bicoherences have been used to analyze the washing complex dynamical
behaviour. It has been found that the dominant mode is the spin-dry frequency,
while the higher modes have signi"cantly lower power. The quadratic phase
coupling between the second and "fth harmonic is present, thus con"rming that the
process is non-linear. It is also shown that the bicoherence estimate is sensitive to
division by a small number, which can increase its number of peaks. In this case, the
magnitude bispectrum has been used to provide a more realistic picture of
quadratic phase coupling. The model, described in Part I, is able to simulate the
amplitude and the frequency of the predominant harmonic of the washing complex
in the steady state, but is unable to simulate all the richness of the motion of the
washing complex.
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1. INTRODUCTION

In this second part of the paper, experimental results are given to verify the
theoretical model as deduced in Part I.

The problem in experimental investigations of frictional systems lies mainly in
the very complex frictional mechanism [1}3]. The stick-slip phenomenon was
discussed in reference [2] in the case of a single d.o.f. system with one and two stops
per half-cycle. Another experimental example was described in reference [4] of the
chaotic dynamics of a harmonically forced spring}mass system with dry friction
designed to vary linearly with displacement.
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For oscillating systems with several degrees of freedom, the in#uence of the
degree of non-linearity on the integral of correlation dimension (ICD) was shown
experimentally in the case of a series of coupled rigid bodies [5] in planar motion.
On the other hand, the values of the correlation dimension were shown to be
dependent on the cutting force in cutting processes where dry friction plays an
important role [6]. It was also shown that fault diagnosis of the rolling element
bearings may be made by using the correlation dimension [7].

To establish the chaotic nature of the processes, including the friction forces, the
Lyapunov exponents were computed [1, 8] from a single measured time history. It
was shown that Lyapunov exponents may not be enough to distinguish between
the strange chaotic and non-chaotic attractors [1].

Bicoherence measures the phase coherency among three harmonics [9, 10], thus
detecting quadratic phase coupling (QPC) in a signal. Because machine faults are
often associated with some non-linear mode of operation which transfers energy
between components of the harmonics, the bicoherence can be used for condition
monitoring [11}13]. Bicoherence can be further used to discriminate between
phase coupled and randomly excited harmonics and for estimation of the fraction
of power due to the QPC [10].

In this paper bicoherence has been used to provide additional insight into the
washing machine dynamics. Special attention has been given to the statistical
stability of the bicoherence estimator and the problem of the division by small
number.

2. EXPERIMENTAL SET-UP

The experiment was performed on a washing machine, see Figure 1. As a part of
the washing machine, a washing complex is made up of the tub in which the drum is
rotating, additional weights and the electromotor attached to the tub and the
suspension arms holding the tub as vibroisolation. In the drum of the washing
Figure 1. Experimental set-up.
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complex at maximum radius an eccentric mass was "xed. In that way the imbalance
of the rotating parts was provided and the worst possible laundry distribution was
simulated. The system accelerations in vertical and horizontal directions were
measured simultaneously using two BruK el and Kjaer (B&K)-type 4367
accelerometers with B&K-type 2635 and 2626 charge ampli"ers. The signals were
acquired by NI AT-MIO-16E-1 data acquisition board and stored on HDD of
a PC for further analysis. The charge ampli"er's "lter was used for signal
conditioning. The low-pass "ltering was set at 3 kHz on both charge ampli"ers
(B&K 2635 and B&K 2626). The sampling frequency was 3 kHz due to aliasing.
The signals were resampled to 1 kHz for phase-space analysis.

3. EXPERIMENTAL RESULTS ANALYSIS

The time series of the horizontal (x) and vertical (y) accelerations are presented in
Figure 2. The time histories of two simultaneously measured accelerations show
that the motion of the washing complex has one dominant frequency; hence, the
frequency of spin dry. The signals of accelerations in the horizontal and vertical
direction are approximately shifted by n/2; hence, the washing complex response
follows the centrifugal excitation. It was also found that the speed control was able
to keep the spin-dry frequency within the range of $1%, compared to the set
spin-dry frequency.

3.1. SPECTRAL ANALYSIS

Power spectra were calculated by using 4096 FFT points. Overlapping of 5%
was used to obtain 128 segments, and the Hamming window was applied in the
time domain. A fourth order lowpass elliptic digital "lter was used with a cut-o!
frequency of 300 Hz with approximately linear-phase characteristics. The power
spectra of horizontal and vertical acceleration are presented in Figures 3 and 4. In
both the horizontal and vertical direction the spin-dry frequency of 17)58 Hz is
clearly visible. The third harmonic, generated by the three-arm support of the
drum, has already 70 dB lower power. In Figure 4, peaks at 145)02 and 208)01 Hz
can be observed. The cause of these two peaks is unknown. At other frequencies the
spectral power is signi"cantly lower.
Figure 2. Measured steady state accelerations. = , a
x
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y
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Figure 3. Power spectrum of the measured horizontal accelerations.

Figure 4. Power spectrum of the measured vertical accelerations.

944 M. BOLTEZ[ AR E¹ A¸.
The bicoherences of horizontal and vertical measured accelerations were
calculated using the same parameters as described in Part I, and are presented in
Figures 5 and 7. The number of FFT points per segment was 1024; the 5%
overlapping was used to obtain 513 segments. Because of its ability to resolve QPC
peaks [14, 15], the Hamming window was applied in the time domain. The
bicoherence signi"cance of ¹a%"95% was used to determine the minimal
signi"cant bicoherence level. Biphase signi"cance was not used because it was
found that the probability distribution of the biphase did not comply with the
normal distribution. The numerical zero threshold was set to 1E-10.



Figure 5. Bicoherence surface plot of the measured horizontal acceleration.

Figure 6. Magnitude bispectrum contour plot of the measured horizontal accelerations. The
maximum value is 1)45, minimum and maximum contour values are 0)2 and 1)4.
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One can see that the bicoherence of the horizontal acceleration has multiple
peaks, scattered over the most part of the IT. The numerous peaks are probably
caused by the division with small number, especially because the magnitude
bispectrum exhibits only one peak of 1)45 at (17)58, 17)58) Hz; see Figure 6.
Although the variance of the bispectrum is dependent upon the signal's second
order properties, the large number of segments should minimize this in#uence. The
bicoherence of the vertical accelerations gives a much clearer picture of QPC. Four
distinct bicoherence values stand out; see Table 1. The second harmonic has very
little power and can be observed only on the power spectrum of the vertical
accelerations in Figure 4. The little power it has, is 63% due to the QPC of the



Figure 7. Bicoherence surface plot of vertical acceleration.

TABLE 1

¹he highest bicoherence values of vertical accelerations

Bicoherence Frequency (Hz) Frequency sum (Hz) Harmonic

0)63 (17)58, 17)58) 35)16 2
0)51 (35)16, 17)58) 52)73 3
0)41 (52)73, 17)58) 70)31 4
0)31 (52)73, 35)16) 87)89 5
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spin-dry frequency. The third harmonic (+!70 dB) is 49% generated by the
three-arm support of the drum and 51% generated by QPC of the spin-dry
frequency and second harmonic. Similarly, 41% of the fourth and 31% of the "fth
harmonic's power is due to the QPC. These values con"rm that the process
involved is not linear and that quadratic non-linearities are present. In Figure 5,
a peak in the higher frequency domain (up from 300 Hz) can be seen. This is due to
the magnitude characteristic of the digital "lter used and division by small number
when normalizing. The "lter's magnitude response starts to fall at 300 Hz, and
only reaches values close to zero at 500 Hz. In this case both the numerator
and denominator of the bicoherence are larger than the zero threshold, so that the
algorithm cannot "lter out these values. This translates into the peak seen in
Figure 5.

3.2. PHASE-SPACE ANALYSIS

In experimental work the real phase space is almost always unknown, and the
phase space could be reconstructed through the embedding procedure described in
Part I.
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3.2.1. Correlation dimension

To characterize the dimensionality of an attractor in reconstructed phase space
the integral of correlation dimension was used. The formulae are presented in
Part I.

The estimates of the correlation dimension were computed by employing
a reconstruction procedure on the experimental time histories of the horizontal and
vertical washing complex accelerations. The correlation dimensions were extracted
as l"1)51$0)02 and 1)24$0)01 respectively. The di!erences in the correlation
dimension estimates are due to the fact that each signal carries the signature of the
entire dynamics of the system, although the dynamics of the measured direction has
a greater importance. It was shown [3] that the dynamics in the horizontal
direction is richer than that in the vertical direction. In both cases estimates of the
correlation dimension show that the attractor is topologically a fractal object.

The "rst log}log diagram of the integral of the correlation dimension based on
the horizontal acceleration is shown in Figure 8, and the second one based on the
vertical acceleration is shown in Figure 9. The interesting part of the diagrams lies
above the point where the lines of the integral of correlation dimension computed
with di!erent embedding dimensions converge. The lower part of the diagrams,
with regard to the characteristic distance ¸, shows the typical dependence of the
correlation dimension on white noise hidden in the measured signal [16]. All of the
plots in Figures 8 and 9 are based on a computation using 5000 points [17] when
reconstructing the phase space.

3.2.2. ¸yapunov exponents

The Lyapunov exponents measure the exponential divergence (positive
exponents*chaotic motion) or convergence (negative exponents*regular motion)
of two initially neighbouring trajectories in the phase space.
Figure 8. ICD on measured horizontal accelerations of the washing complex.** d values; }r}, 3;
}j} , 5; }m} , 7; *]* , 9; *** , 13; }d} , 15.



Figure 9. ICD on measured vertical accelerations of the washing complex. ** d values; }r}, 3;
}j} , 5; }m} , 7; *]* , 9; *** , 13; }d} , 15.
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The technique [18] for computing the largest positive Lyapunov exponent from
small data sets has been used. The method locates the nearest neighbour to the
reference point using the Euclidean norm and so de"ning the initial distance
between the points. The method imposes additional constraints; hence, the nearest
neighbour should have a temporal separation greater than the mean period of the
time series. Consequently, the two neighbouring points could be treated as nearby
initial conditions for two di!erent trajectories. The largest Lyapunov exponent is
then estimated as the mean rate of separation of the neighbours. The algorithm is
unable to compute negative Lyapunov exponents.

The estimates of the largest Lyapunov exponent were computed by employing
a reconstruction procedure on the experimental time histories of the horizontal and
vertical washing complex's accelerations. The largest Lyapunov exponents were
estimated as j

.!9,x
"0)20$0)00 and j

.!9,y
"0)16$0)00, respectively, as the

inclination of the slope of the linear regression line imposed on plots in Figures 10
and 11, respectively, for d"9. The di!erences in Lyapunov exponent estimates are
due to the same phenomena as described in case of the correlation dimension
estimation. It is shown again that the processes in the horizontal direction are more
&&turbulent'' than those in the vertical direction.

To check for spurious Lyapunov exponents the time #ow of processes was
reversed [19]. It would be normal, if the computed Lyapunov exponents were not
spurious, to expect negative estimates of the largest Lyapunov exponents of both
processes when time is reversed. Since the method is unable to compute negative
Lyapunov exponents, the almost zero value of both the largest Lyapunov
exponents of reverse processes was estimated; see Figures 12 and 13. Hence the
estimation of the largest Lyapunov exponents of the accelerations' time histories
shows that they are not spurious and the dynamics of the washing complex appears
to be chaotic.



Figure 10. Divergence of trajectories on measured horizontal accelerations of the washing complex.

Figure 11. Divergence of trajectories on measured vertical accelerations of the washing complex.
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All of the plots in Figures 10}13 are based on a computation using 5000 points of
reconstructed phase space [17].

3.2.3. Attractor visualization

In the case of experimental data the visualization could be done through the
embedding procedure as described in Part I.

The visualized attractor from the horizontal acceleration's time history in
three-dimensional space, d"3, is shown in Figure 14, and the visualized attractor
from the vertical acceleration's time history in three-dimensional space, d"3, is
shown in Figure 15.

The washing complex attractor is torus-shaped; this is due to the one
predominant harmonic which is driven by spin dry. It is also visible that the



Figure 12. Divergence of trajectories on reversed signal of horizontal acceleration of the washing
complex.

Figure 13. Divergence of trajectories on reversed signal of vertical acceleration of the washing
complex.
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dynamics in the horizontal direction are more widely dispersed around the
predominant harmonic's limit cycle than in the vertical direction. This is in
agreement with results of analysis of the attractor's dimensionality and of the
Lyapunov exponents.

4. CONCLUSIONS

The steady state responses of the washing-machine washing complex oscillations
were analyzed. The results of the simulations and experiment have been compared.

The estimates of the correlation dimension are revealed on the fractal structured
attractor of the washing complex dynamics. This is consistent with the estimates of



Figure 14. Visualization of the washing complex attractor from the horizontal acceleration's time
history.

Figure 15. Visualization of the washing complex attractor from the vertical acceleration's time
history.
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the largest Lyapunov exponent. Its positive value reveals the chaotic nature of the
attractor. The visualization of the attractor shows its torus-shape, which is due to
one predominant harmonic driven by spin dry, and the dispersion around the
predominant harmonic's limit cycle, which is due to the chaotic nature of motion.

In all cases of phase-space analysis the di!erence between dynamics in the
vertical and horizontal direction is clearly visible. The di!erence is due to the fact
that each signal carries the signature of the entire dynamics of the system, although
the dynamics of the measured direction has a greater importance. Nevertheless,
each of the signals carries enough of the system's dynamics to enable all
phase-space analyses, regardless of the direction of the processed time history, to
show the same nature of the washing complex motion.
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In spite of the chaotic nature of washing complex motion, the power spectra do
not appear to be continuous due to the predominant harmonic. The power spectra
of such processes could be easily mistaken for a quasi-periodic one.

Bispectral analysis has also been performed on the measured horizontal and
vertical accelerations of the washing complex oscillations. Due to the poor
statistical properties of the bispectral estimate, bicoherence has been used as
a means of detecting QPC. It has been found that the division by small numbers can
have a great in#uence on this estimate. The division by small numbers increases the
number of QPC, detected by bicoherence estimate, and is demonstrated in the large
number of bicoherence peaks. To overcome this problem, a numerical threshold for
zero value has been introduced. Whenever the numerator of the bicoherence is
smaller than this threshold, bicoherence is set to zero. If on the other hand the
numerator is greater and the denominator is smaller than the threshold, a small
constant value is added to the denominator. It has also been found useful to check
the magnitude bispectrum. All the bicoherences presented are to the some degree
in#uenced by the division by small numbers. When comparing the results of the
model and experiment, the latter suggest that the theoretical model is not complex
enough and exhibits less QPC. The experimental results show that the third, fourth
and "fth harmonic are not independent, but are to the small extent the result of the
QPC.

The discrepancy between the model and experiment could be attributed to our
not being able to model in every single detail such a complex device as the washing
machine. For example, the real electromotor is capable of holding a constant
spin-dry speed in the range of $1% of the declared speed. The supports contain
some elastomeric parts that were modelled only by their frictional properties. In
our case, we found that even the nature of motion of the model and the washing
complex is not the same, but that the model well re#ects the steady state motion of
the washing complex in the frequency and time domains.
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